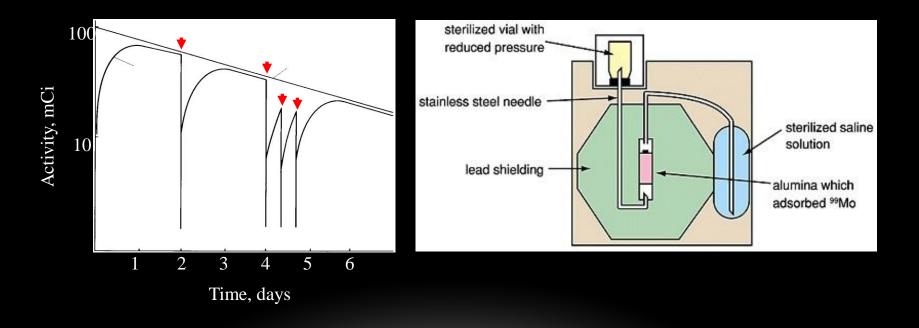

2016 臺灣醫用迴旋加速器學會年會 調製法規協和暨品質輔導相關訓練第二次教育 訓練暨討論會

绪-68/鎵-68發生器 法規與輻防議題

魏孝萍

臺灣醫用迴旋加速器學會 衛生福利部食品藥物管理署105年「斷層掃描 用正子放射性同位素調製法規協和研究暨品質 輔導相關訓練」計畫

What is a ⁶⁸Ge/ ⁶⁸Ga Generator?



MIRD Radionuclide Data and Decay Scheme

68Ge/ 68Ga Generators

- Consists of a short glass column packed with a solid support.
- > ⁶⁸Ge is absorbed onto the solid matrix.
- ⁶⁸Ge (parent) decays to ⁶⁸Ga (daughter), which further decays to ⁶⁸Zn (stable).
- The ⁶⁸Ga is washed off the column with an appropriate solution.
- Allow for simple and fast preparation of ⁶⁸Garadiopharmaceuticals for PET imaging.
- ⁶⁸Ga-labeled peptides have shown promise for imaging neuroendocrine tumors (NETs).

Concept like a ⁹⁹Mo-^{99m}Tc generator

Milestones of ⁶⁸Ge/ ⁶⁸Ga generator development

1950–1970	First ⁶⁸ Ge/ ⁶⁸ Ga generator					
	Clinical applications: ⁶⁸ Ga-EDTA; ⁶⁸ Ga-citrate; ⁶⁸ Ga-colloid					
1970–1980	Further development of ⁶⁸ Ge/ ⁶⁸ Ga generator: ⁶⁸ Ga(III)					
1990s	Commercial generator: ⁶⁸ Ga(III)					
2000s	Clinical use with advent of SST ligands					
2011	GMP generators					
2014	Marketing authorization					

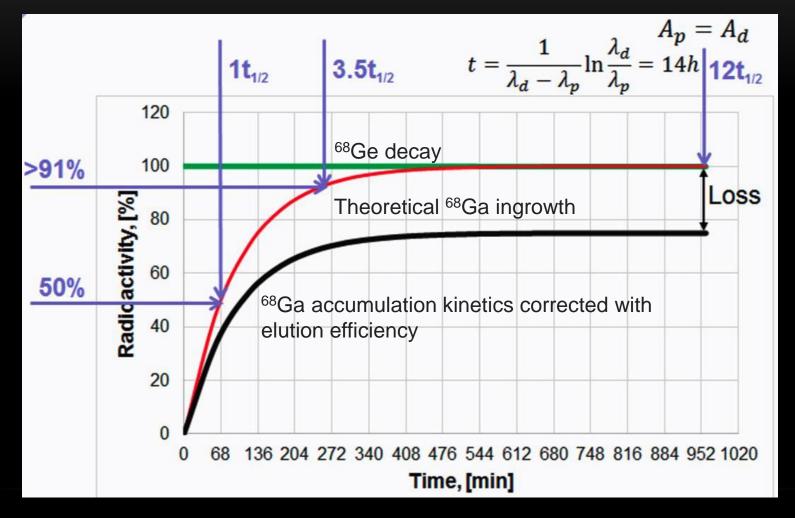
Nuclear reactions to produce ⁶⁸Ge

Nuclear	Target	Projectile		Yield	
reactions	8	MeV	μA	µCi/µA∙ h	
⁶⁹ Ga (p,2n)	^{nat.} Ga ₄ Ni	19.5-0	2-3	9.2	
⁶⁹ Ga (p,2n)	^{nat.} Ga ₂ O ₃	55-13	2	45	
⁶⁹ Ga (p,2n)	Ga	22	50	15	
^{nat.} Ge (p,xn)	Ge	64-28	1	48	
⁶⁹ Ga (d,3n)	Ga ₂ O ₃	30	10	1.7	
^{nat.} Zn (α ,xn)	Zn	40-20	0.5	1	
$^{-66}$ Zn (α .2n)	Zn –	40-20	0.5	1-2	

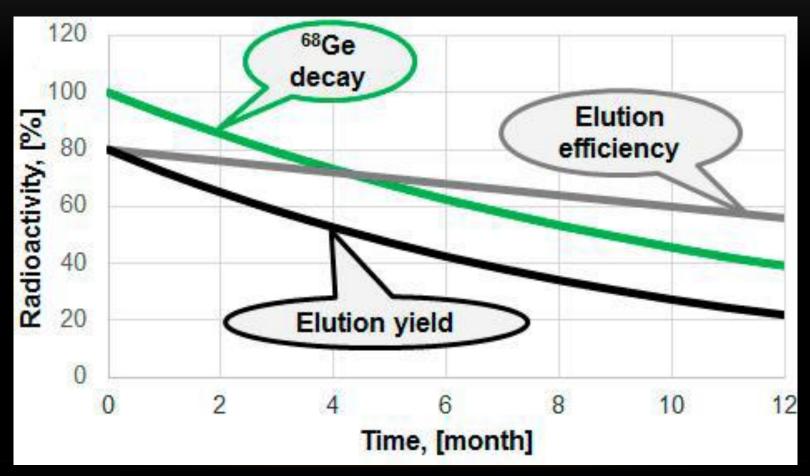
Major parameters of a ⁶⁸Ge/ ⁶⁸Ga generator performance

- Chemical separation specificity
- Radiation resistance
- Chemical stability of column material
- Eluate sterility and apyrogenecity
- ⁶⁸Ge breakthrough
- Eluent type
- Elution profile

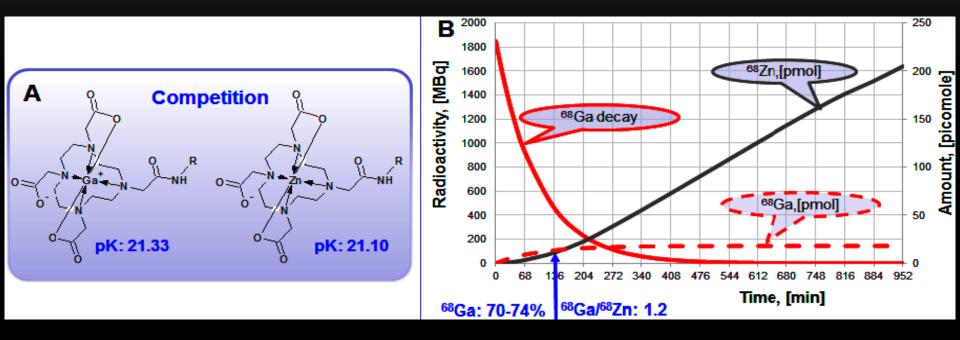
Some commercial ⁶⁸Ge/ ⁶⁸Ga generators


	Eckert & Ziegler Cyclotron Co. Ltd.	Eckert & Ziegler IGG100 and IGG101 GMP; Pharm. Grade	I.D.B. Holland B.V.	Isotope Technologies Garching
Column matrix	TiO ₂	TiO_2	SnO_2	SiO ₂ /organic
Eluent	0.1 M HCl	0.1 M HCl	0.6 M HCl	0.05 M HCl
⁶⁸ Ge breakthrough	<0.005%	<0.001%	~0.001%	<0.005%
Eluate volume	5 mL	5 mL	6 mL	4 mL
Chemical impurity	Ga: <1 µg/mCl	Fe: <10 µg/GBq	<10 ppm (Ga, Ge, Zn,	Only Zn from
	Ni < 1µg/mCl	Zn: <10 µg/GBq	Ti, Sn, Fe, Al, Cu)	decay
Weight	11.7 kg	10 kg 14 kg	26 kg	16 kg

- Most of the generators use acidic eluent since it provides cationic Ga(III) for the further direct chemistry.
- Inorganic column sorbents are used more widely as they are less sensitive to radiolysis.


Problems associate with the use of a ⁶⁸Ge/ ⁶⁸Ga generator?

- Elution efficiency decreases with time.
- Stable ⁶⁸Zn (daughter of ⁶⁸Ga) interferes ⁶⁸Ga-labeling reactions.
- Acidity and other metallic impurities may not favor the ⁶⁸Ga-labeling reactions.


Secular equilibrium with ⁶⁸Ge decay and ⁶⁸Ga accumulation

Hypothetical graphs showing ⁶⁸Ge decay, elution efficiency and non-decay corrected elution yield

⁶⁸Zn interferes ⁶⁸Ga-labeling reaction

- Regular elution and elution prior to the synthesis.
- Purification of the eluate prior to the labeling synthesis.
- Enhanced amount of the ligand.
- Use of chelators with high selectivity for Ga(III).

Post-processing of ⁶⁸Ge/⁶⁸Ga eluate

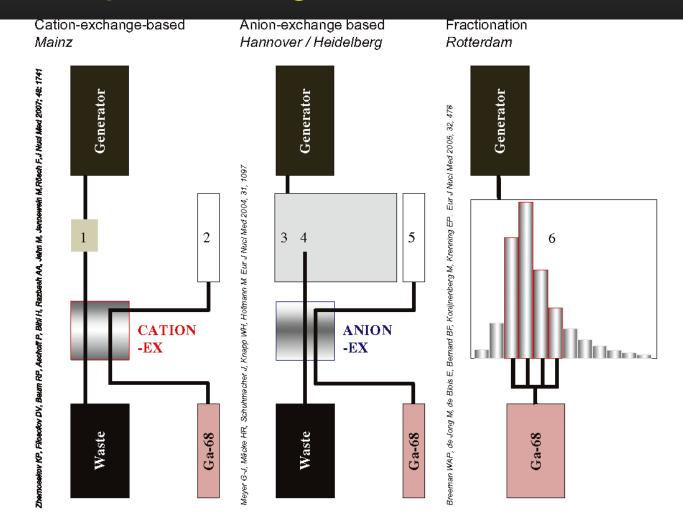


Fig. 8. Overview on post-processing technologies for commercial ⁶⁸Ge/⁶⁸Ga radionuclide generators. (1): Direct generator elution through cation-exchange cartridge, (2): desorption of purified ⁶⁸Ga using HCl/acetone or HCl/ethanol mixtures, (3): generator elution into HCl reservoir, (4): subsequently elution through anion-exchange cartridge, (5): desorption of purified ⁶⁸Ga using water, (6): identification of the eluate fraction representing at least 2/3 of the ⁶⁸Ga activity and use without further purification.

Rösch F, et al. Appl Radiat Isotopes 2013; 76: 24-30

Regulatory issues about ⁶⁸Ge/ ⁶⁸Ga generator and its application?

- ▶ 適用於調製作業要點嗎?
- ▶ 適用於一般醫院核醫科嗎?
- ➢ Should either a ⁶⁸Ge/ ⁶⁸Ga generator or its eluate need NDAs (查驗登記) approval?
- Can hospital radiopharmacists "compound" a ⁶⁸Ga radiotracer, as they do for ^{99m}Tc radiopharmaceuticals?

Preparation of ^{99m}Tc-RP vs. Manufacturing of ⁶⁸Ga-RP

Preparation (^{99m}Tc) Manufacturing (⁶⁸Ga) Generator elution into product vial with API 1. Generator elution into reaction vial Labelling in the product vial 2. Labelling in the reaction vial Purification of the product 3 Formulation 4 Formulation 99m TC 5. Sterile filtration 6. Quality control 68Ga 7. Dispensing 4 Release 8 Release Synthesis module Product

www.fda.gov

U.S. Food and Drug Administration Protecting and Promoting Public Health

Ge-68/Ga-68 Generators-FDA Perspective

John K. Amartey, MS, PhD FDA/CDER/OPQ/ONDP SNMMI Annual Meeting June 6-10, 2015 Baltimore

U.S. Food and Drug Administration Protecting and Promoting Public Health

Regulatory Pathway for Ge/Ga Generator

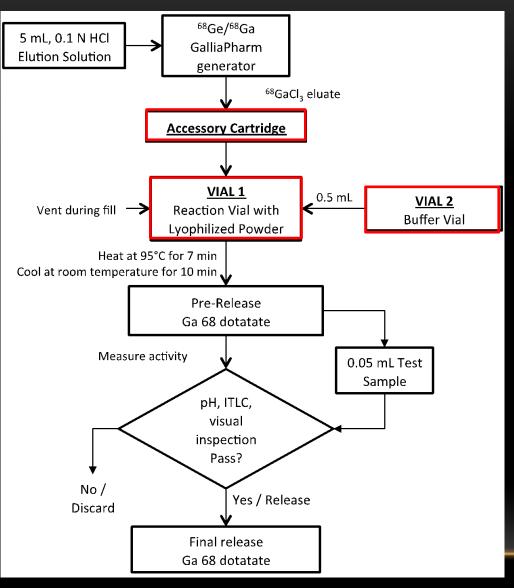
In contrast to the Mo-99/Tc-99m generator, the Ge/Ga generator has no current stand alone clinical indication, and therefore cannot be submitted as a NDA. A drug master file (DMF Type II) is currently the preferred pathway

(DMFs are <u>not approved or disapproved</u> by the FDA, rather they are reviewed for adequacy/acceptance in relation to a submitted application using the indicated generator)

Some Information needed in a Ge-68/Ga-68 Generator DMF

- Source of the Ge-68
- Target composition and irradiation parameters
- Production method (Cyclotron, etc.)
- Isolation/separation method for Ge-68
- Column and generator preparation
- Quality control (Ge-68 and Ga-68 eluate)
 -(21 CFR 314.420)-

Ga-68-Radiopharmaceutical INDs


- Currently FDA is making Ga-68radiopharmaceuticals available through IND studies.
- The quality of the Ga-68radiopharmaceutical is assured by CMC review.

Ga-68-Radiopharmaceuticals: kit formulation

- The FDA encourages that the Ga-68radiopharmaceutical and the kit formulation from which it is prepared should be submitted under a single NDA
- The kit should be compatible with one or more commercial generators.

Preparation of ⁶⁸Ga-DOTATATE from NETSPOT[™] kit

http://www.adacap.com/products/

NETSPOTTM (Somakit-TATE) designated as an orphan drug by the EMA and the FDA.

- FDA approval2016.
- Distributed by Advanced
 Accelerator
 Applications, US (AAA).

Non-generator-based ⁶⁸Ga Production

Am J Nucl Med Mol Imaging 2014;4(4):303-310 www.ajnmmi.us /ISSN:2160-8407/ajnmmi0000152

Original Article Cyclotron production of ⁶⁸Ga via the ⁶⁸Zn(*p*,*n*)⁶⁸Ga reaction in aqueous solution

Mukesh K Pandey¹, John F Byrne², Huailei Jiang¹, Alan B Packard³, Timothy R DeGrado¹

¹Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; ²Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; ³Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA

Press release

IBA and ICNAS Announce Ga-68 production on Cyclone[®] 18 using IBA liquid target & Synthera[®]

IBA is proud to announce a patent application EP15170854 on a process for producing and purifying Ga-68 using a liquid target system on a medium energy cyclotron to obtain Ga-68 labelled radiopharmaceuticals for human use Radiation protection about ⁶⁸Ge/ ⁶⁸Ga generator and its application

Ge-68

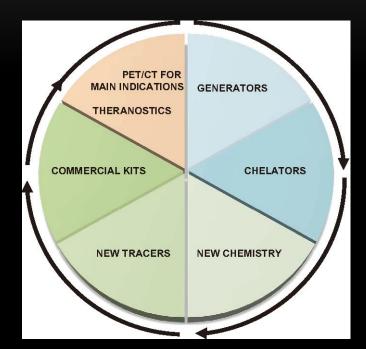
- ➤ Half-life: 271 days
- Decay type: EC
- Gamma & X-ray: 9.22 keV (13.1%), 9.25 keV (25.6%), 10.3 keV (5.46%)
- Hazard category:
 C-level (low hazard): ≤ 10 μCi
 B-level (moderate hazard): > 10 μCi to 1 mCi
 A-level (high hazard): > 1 mCi
- The exposure rate from 1 mCi (at equilibrium with daughter Ga-68) = 5375 mR/h @1 cm.
- A 10 mCi generator should be shielded with 1.5 cm of lead (minimum) to reduce the exposure to 5 mR/h @1 feet; 3 cm of lead will reduce the exposure to 0.5 mR/h @1 feet.
- ➤ ALI = 540 μCi

Ga-68

- ➤ Half-life: 68.3 days
- Decay type: β⁺ [1.90 MeV (88%), 822 keV (1%)] + EC
- Gamma & X-ray: 511 keV (178%); 1077 keV (3%)
- Hazard category:
 - C-level (low hazard): \leq 1 mCi
 - B-level (moderate hazard): > 1 mCi to 100 mCi

A-level (high hazard): > 100 mCi

> The exposure rate from 1 mCi = 5375 mR/h @1 cm.


A 10 mCi generator should be shielded with 1.5 cm of lead (minimum) to reduce the exposure to 5 mR/h @1 feet; 3 cm of lead will reduce the exposure to 0.5 mR/h @1 feet.

➢ ALI = 1.62 mCi

Prospects

 Technology advancement/ maturation
 Who prepares ⁶⁸Ga tracer?

Cost down

Thank you for your attention